
Cocoa Scripting
Session 303

Cocoa Scripting

Mark Piccirelli
Cocoa Frameworks Group

What You’ll Learn
•The basics of Cocoa Scripting, if you have
not used it yet

•What scripting commands and classes are
already provided by Cocoa

•How to declare new scripting classes
•How to implement scripting classes

What You’ll Learn (Cont.)
•The types you can use in scripting suites
•New features
•Future directions

Cocoa Scripting Basics
•AppleScript presents scriptability as commands
and classes that are grouped into suites

•Applications handle commands
•Applications expose instances of
scriptable classes

Cocoa Scripting Basics

•Gives you a way to declare commands
and classes

•Handles incoming Apple events, converts
them to command objects, and executes the
command objects

•Declares and implements most of the Standard
Suite and Text Suite commands and classes

What Cocoa does for you

Cocoa Scripting Basics

•Include an NSAppleScriptEnabled entry
in its Info.plist

•Include files in its bundle to declare
scripting suites

•Provide methods to handle custom commands
•Provide accessor methods in scriptable classes

What your application must do

Files in the App’s Bundle

•Parallel property lists
•.scriptSuite declares scripting model and
mappings to Objective-C classes and methods

•.scriptTerminology contains human-readable
names and descriptions

•Cocoa automatically parses them both and
creates 'AETE' data at run time

.scriptSuite and .scriptTerminology files

Files in the App’s Bundle

•Each contains a Commands dictionary
•Each contains a Classes dictionary
•.scriptSuite also contains AppleEventCode and
(programmatic) Name entries

•.scriptTerminology also contains human-readable
Description and Name entries

•Other stuff to support custom value types

.scriptSuite and .scriptTerminology files

Commands

•AppleEventClassCode and AppleEventCode
•Arguments
•AppleEventCode and Type for each argument
•ResultAppleEventCode
•Type (of the return value)
•CommandClass

Declare them in the .scriptSuite file

CommandClass?
•The name of an Objective-C subclass of
NSScriptCommand (or NSScriptCommand itself)

•Scripted operations are sent to scriptable
applications via Apple events

•Cocoa converts each scripting Apple event
to an instance of the CommandClass, and
then sends the command object an
-executeCommand message

•Subclassing NSScriptCommand often is not
necessary

Declare them in the .scriptTerminology file too

Commands

•Human-readable Description
•Human-readable Name
•Arguments—the exact same set as in the
.scriptSuite file

•Human-readable Description and Name
for each argument

The Close command

Example

•Part of the AppleScript Standard Suite
•Declared in the Foundation framework’s
NSCoreSuite.scriptSuite and
NSCoreSuite.scriptTerminology files

•Encapsulation and default implementation
provided by Foundation’s NSCloseCommand
class

•AppKit’s NSDocument knows how to handle it

Cocoa takes care of the basics

Built-in Commands

•The Standard Suite declares commands: open,
print, quit, close, save, count, delete, duplicate,
exists, make, move, etc.

•Foundation and AppKit provide implementations
for all of these—NSCountCommand,
NSDeleteCommand, etc.

•Foundation provides implementations of the
all-important get and set commands too—
NSGetCommand and NSSetCommand

Cocoa takes care of the basics

Built-in Commands

•Your scriptable classes have to work with
Foundation’s standard command classes

•Key Value Coding
•You shouldn’t have to declare many
new commands

Declare them in the .scriptSuite file

Classes

•Superclass
•AppleEventCode
•Attributes (correspond to AppleScript
properties)

•ToManyRelationships (elements)
•AppleEventCode, ReadOnly, and Type
for each attribute and to-many relationship

•SupportedCommands
•(ToOneRelationships)

Classes

•Class name should virtually always be an
Objective-C class name, e.g., “NSWindow”

•Superclass name should be name of class in
same suite, or suite-specified name of class in
other suite e.g., “NSCoreSuite.NSWindow”

Declare them in the .scriptSuite file

Classes

•Human-readable Description
•Human-readable Name and PluralName
•Attributes—the exact same set as in the
.scriptSuite file

•Human-readable Description and Name
for each attribute

Declare them in the .scriptTerminology file too

Example

•TextEdit document page setup should
be scriptable

•Let’s look at the declarations to add it

A page setup class

Demo

Cocoa takes care of the basics

Built-in Classes

•Standard Suite classes: application,
document, window

•Text Suite classes are implemented by
NSTextStorage

•Subclassing just to add scripting properties
and elements is unnecessary with Objective-C;
use categories

What’s in an NSScriptCommand?

Command Execution

•Virtually everything from the Apple event, but
in a different form

•An object specifier for the receiver(s) of
the command

•Arguments, some of which might also be object
specifiers, some of which might be value objects

•Object specifiers are instances of subclasses of
NSScriptObjectSpecifier

Object Specifiers

•AppleScript references:
word 4 of text of front document

•Become NSScriptObjectSpecifer chains:
NSIndexSpecifier (word 4)

NSPropertySpecifier (text)
NSIndexSpecifier (document 1)

NSScriptObjectSpecifier and its subclasses

•Cocoa has an NSScriptObjectSpecifier subclass
for every AppleScript reference form:

•Index reference NSIndexSpecifier
•Property Reference NSPropertySpecifier
•Range reference NSRangeSpecifier
•Name reference NSNameSpecifier
•Etc.

NSScriptObjectSpecifier and its subclasses

Object Specifiers

NSScriptObjectSpecifier and its subclasses

Object Specifiers

•Object specifiers are evaluated during
command execution

•Actual objects are found
•Containers are asked for attribute values
and relationship objects

What are the steps?

Command Execution

•Evaluation of the receivers object specifier
•Evaluation of any argument object specifiers
•Send the command to each receiver if they
handle it (according to SupportedCommands in
the receiver class’ .scriptSuite declaration)

•More likely, invoke the script command’s
-performDefaultImplementation method

How do Foundation’s commands work?

Command Execution

•Most of Foundation’s NSScriptCommand
subclasses override
--performDefaultImplementation

•Your classes don’t have to explicitly support
these commands (get, set, make, move, etc.)

•Make your classes conform to Key Value Coding,
and we’ll do the rest

Key Value Coding (KVC)
•KVC lets us invoke methods in your class,
without knowing their names

•KVC lets you write your scripting support
methods in a natural way

•NSScriptObjectSpecifier uses KVC to find
specified objects during evaluation

•NSGetCommand, NSSetCommand,
NSMoveCommand, etc. all use KVC

•A great use of Objective-C’s dynamism

KVC for Scriptable Attributes

•Your objects will be sent -valueForKey:attributeName
messages

•attributeName will be the string used to declare the
attribute in the .scriptSuite file

•You could override -valueForKey:
•Better yet, implement -attributeName methods;
-[NSObject valueForKey:] will invoke them

•Return an object of the type declared for the attribute
in the .scriptSuite file

Implement get-accessors in classes with attributes

Set-accessors in classes with writable attributes

KVC for Scriptable Attributes

•Your objects will be sent
-takeValue:value�forKey:attributeName messages
for setting of non-read-only attributes

•Implement -setAttributeName: methods
•The object’s type isn’t guaranteed, so check

A page setup class

Example

•Let’s look at the code to implement
the scriptability we’ve already declared

Demo

KVC for To-Many Relationships

•Your objects will be sent
-valueForKey:relationshipName messages

•relationshipName will be the string used to
declare the relationship in the .scriptSuite file

•Implement -relationshipName: methods
•Return an array of objects

Get-accessors in classes that contain elements

KVC for To-Many Relationships

•Your objects may be sent -valueAtIndex:index
inPropertyWithKey:relationshipName messages

•Implement -valueInRelationshipNameAtIndex:
methods

•Return a single object
•Potentially much more efficient than creating an
array to return from -relationshipName: methods

Get-accessors in classes that contain elements

Get-accessors in classes that contain elements

KVC for To-Many Relationships

•There are now -valueWithName:inPropertyWithKey:
and -valueWithUniqueID:inPropertyWithKey:
messages too

•Implement -valueInRelationshipNameWithName:
and -valueInRelationshipNameWithUniqueID:
methods

•Return a single object
•Used for elements that have name and ID properties

Set-accessors in classes that contain elements

KVC for To-Many Relationships

•Three more possible messages:
• -replaceValueAtIndex:inPropertyWithKey:withValue:
• -insertValue:atIndex:inPropertyWithKey:
• removeValueAtIndex:fromPropertyWithKey:

•You implement:
• -replaceInRelationshipName:atIndex:
• -insertInRelationshipName:atIndex:
• -removeInRelationshipName:atIndex:

Initialization for Element Classes
•Some classes can be instantiated with the
Make command

•Make sure script-creatable classes have good
-init methods

•Make sure script-creatable classes have good
attribute set-accessors, so that Make’s “with
properties” argument works

•Make sure possible containers for such classes
have -replaceInRelationshipName:atIndex: and
-insertInRelationshipName:atIndex: methods

Object Specifier Support
•Your scriptable object may be sent an
-objectSpecifier message

•Right after initialization, during execution
of a Make command

•As the result of a Get command
•Return an instance of one the subclasses of
NSScriptObjectSpecifier; e.g. NSIndexSpecifier,
NSNameSpecifier, NSUniqueIDSpecifier

•Might have to ask the container for its object specifier

Types in .scriptSuite Files
•Class attributes, class relationships, command
arguments, command results all must have
declared types

•Scriptable class names
•Selected Foundation class names
•Some more complicated things

Types in .scriptSuite Files

•Names of classes declared in the same
.scriptSuite file are fine

•So are classes declared in other .scriptSuite files;
suite-specify the name like this:
suiteName.className

•You can use the classes declared in Foundation’s
NSCoreSuite

Scriptable class names

Types in .scriptSuite Files

•NSString — AppleScript “unicode text”
•NSDate — “date”
•NSArray (big bug fixed!) — “list”
•NSDictionary (support for user records is
improved) — “record”

•NSScriptObjectSpecifier — “reference”
•NSPositionalSpecifier — “location reference”

Selected Foundation class names

Types in .scriptSuite Files

•E.g., NSNumber<Bool> — “boolean”
•NSNumber<Int> — “integer”
•NSNumber<Double> — “real”
•Etc.

Different kinds of NSNumber

Types in .scriptSuite Files

•NSNumber<enumerationName>
•Supports AppleScript enumeration types, e.g.,
for the Close command’s saving parameter—
“ask, yes, no”

•.scriptSuite and .scriptTerminology files have
Enumerations dictionaries too

One more kind of NSNumber

NSNameSpecifier

•Supports AppleScript’s name reference form
•E.g., window named “Cocoa Scripting”

•Must be an attribute with an AppleEventCode
of 'pnam'

•Your container class should have
-valueInRelationshipNameWithName:

•Often the fastest way to find one of a large
number of named elements

New!

NSUniqueIDSpecifier

•Supports AppleScript’s ID reference form
•E.g., window 783
•Must be an attribute with an AppleEventCode
of 'ID '

•Your container class should have
-valueInRelationshipNameWithUniqueID:

New!

New!

The Properties Property

•Good scriptable apps make all object properties
available in a “properties” record

•You don’t have to do anything
•Public -scriptingProperties and
-setScriptingProperties: methods, just in case

Implicitly Specified Subcontainers

•Used to have to write:
fourth word of text of front document

•Better to let scripters write:
fourth word of front document

•New DefaultSubcontainerAttribute entry allowed
in .scriptSuite class descriptions

New!

NSAppleEventDescriptor

•A few places where NSAppleEventDescriptor
shows in Cocoa’s API

•New creation methods like
+descriptorWithBool:, +descriptorWithString:,
etc.

•New accessor methods like -boolValue,
-stringValue, etc.

New methods

NSAppleScript

•At last, execute scripts without using Carbon API
•Can initialize from file, including compiled scripts
•Can initialize from source code
•Compile, execute, etc.
•Can even return source code as pretty-printed
rich text

New!

Release Notes
•Very Detailed!
•Cocoa Scripting release notes are on
your Jaguar CD

/Developer/Documentation/ReleaseNotes/Foundation.html

Future Directions
•Start using AppleScript’s new XML-based .sdef
suite definition format

•Even before then, more attractive scripting
dictionaries (categories, orders)

•Better type checking
•Much better error reporting

Future Directions
•Cocoa API for sending Apple events
•Better integration with undo
•Stop asking objects for their object specifiers;
ask objects’ containers instead

•Recordability, recordability, recordability…

Roadmap
Room C

Wed., 9:00am
Room C

Wed., 9:00am

106 AppleScript Update
General scripting news

Civic Center
Wed., 3:30 pm
Civic Center

Wed., 3:30 pm

902 AppleScript Studio Intro
A big user of Cocoa Scripting

Room J1
Thurs., 3:30 pm

Room J1
Thurs., 3:30 pm

FF007 AppleScript:
General scripting issues

Room A1
Fri., 5:00 pm
Room A1

Fri., 5:00 pm

FF016 Cocoa:
Cocoa-specific issues

Who to Contact
Heather Hickman
Cocoa Technology Manager
hhickman@apple.com

http://developer.apple.com/wwdc2002/urls.html

Documentation

•Topic: Application Architecture
• Overview, concepts
• Links to related class reference

Designing a scriptable application

Documentation >Mac OS X > Cocoa > Program Design
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

Documentation

•Topic: Scriptable Applications
• Overview, concepts, programming tasks
• Links to scripting class reference
• Links to other AppleScript documentation

Implementing a scriptable application

Documentation >Mac OS X > Cocoa > Program Design
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

Documentation

•“Designing a Scripting Implementation” by Cal
Simone—Develop Issue 21 (March 1995!)

•Great guidelines for designing an app’s
scriptability

•Some advice about four-character codes

http://developer.apple.com/dev/techsupport/develop/bysubject/iac.html

An oldie but goody

For More Information
•Cocoa Developer Documentation
http://developer.apple.com/techpubs/macosx/macosx.html

•iServices Technical Training
http://www.apple.com/iservices/technicaltraining

•O’Reilly Network: AppleScripting Mac OS X
http://www.oreillynet.com/pub/ct/47

•Other places
• www.stepwise.com

• www.omnigroup.com

• www.cocoadevcentral.com

SuiteModeler

•A neat shareware app for editing .scriptSuite and
.scriptTerminology files, among other things

•Good at flagging mistakes and conflicts
•Check out the EZCocoaAppleScript tutorial too

http://homepage.mac.com/donbriggs

by Don Briggs

Heather Hickman
Cocoa Technology Manager

hhickman@apple.com

http://developer.apple.com/wwdc2002/urls.html

Q&A

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

